B-math 2nd year Mid Term (supplementary) Subject : Analysis III

Time: 2.00 hours

Max.Marks 40.

1. Evaluate the line integral $\int_C (x^2 - 2xy) \ dx + (y^2 - 2xy) \ dy$ where C is a path from (-2,4) to (1,1) along the parabola $y=x^2$.

(10)

2. Let $\alpha:[a,b]\to\mathbb{R}^n$ be a piecewise smooth curve and let $\beta:[c,d]\to\mathbb{R}^n$ be defined by $\beta(t):=\alpha(u(t))$ where $u:[c,d]\to[a,b]$ is continuously differentiable with $u'(t)\neq 0, t\in[c,d]$. Let $f:\mathbb{R}^n\to\mathbb{R}^n$ be a continuous vector field. Show that

$$\int_{a}^{b} f \cdot \alpha = \pm \int_{a}^{b} f \cdot \beta.$$

(10)

- 3. A region S in \mathbb{R}^3 is bounded by the three coordinate planes and the plane x+2y+3z=6. Calculate its volume as a multiple integral. (10)
- 4. Let $u, v : S(r) \to \mathbb{R}$, $S(r) := \{(x, y) : x^2 + y^2 < r\}, r > 1$, be continuously differentiable. Let $f(x, y) := u(x, y)\vec{i} + v(x, y)\vec{j}$ and $g(x, y) := (\partial_x v(x, y) \partial_y v(x, y))\vec{i} + (\partial_x u(x, y) \partial_y u(x, y))\vec{j}$. Evaluate $\int_{S(1)} f \cdot g \, dx dy$. (10)